Human bronchial epithelial cells modulate collagen gel contraction by fibroblasts.
نویسندگان
چکیده
Connective tissue contraction is an important aspect of both normal wound healing and fibrosis. This process may contribute to small airway narrowing associated with certain airway diseases. Fibroblast-mediated contraction of a three-dimensional collagen gel has been considered a model of tissue contraction. In this study, the ability of primary cultured human bronchial epithelial cells (HBEC) obtained by bronchial brushings to modulate fibroblast gel contraction was evaluated. Human lung fibroblasts (HFL1) were cast into type I collagen gels. The gels were floated both in dishes containing a monolayer of HBEC or in dishes without HBEC. Contraction assessed by measuring the area of gels was increased at all time points from 24 h up to 96 h of coculture. At 48 h, coculture of HBEC with fibroblasts resulted in significantly more contraction than fibroblasts alone (36.6 ± 1.2 vs. 20.4 ± 1.7%, P < 0.05). Lipopolysaccharide (LPS, 10 μg/ml) stimulation of the HBEC augmented the contraction (44.9 ± 1.0%, P < 0.05 vs. HBEC). In the presence of indomethacin, the augmentation by LPS was increased further (52.2 ± 4.3%, P< 0.05 vs. HBEC with LPS), suggesting that prostaglandins (PGs) are present and may inhibit contraction. Consistent with this, PGE was present in HBEC-conditioned medium. Bronchial epithelial cell conditioned medium had an effect similar to coculturing. SG-150 column chromatography revealed augmentive activity between 20 and 30 kDa and inhibitory activity between 10 and 20 kDa. Measurement by enzyme-linked immunosorbent assay confirmed the presence of the active form of transforming growth factor (TGF)-β2. The stimulatory activity of conditioned medium was blocked by adding anti-TGF-β antibody. These data demonstrate that, through the release of factors including TGF-β2 which can augment and PGE which can inhibit, HBEC can modulate fibroblast-mediated collagen gel contraction. In this manner, HBEC may modulate fibroblast activities that determine the architecture of bronchial tissue.
منابع مشابه
Two-photon laser scanning microscopy of epithelial cell-modulated collagen density in engineered human lung tissue.
Tissue remodeling is a complex process that can occur in response to a wound or injury. In lung tissue, abnormal remodeling can lead to permanent structural changes that are characteristic of important lung diseases such as interstitial pulmonary fibrosis and bronchial asthma. Fibroblast-mediated contraction of three-dimensional collagen gels is considered an in vitro model of tissue contractio...
متن کاملA 3D epithelial–mesenchymal co-culture model of human bronchial tissue recapitulates multiple features of airway tissue remodeling by TGF-β1 treatment
BACKGROUND The collagen gel contraction assay measures gel size to assess the contraction of cells embedded in collagen gel matrices. Using the assay with lung fibroblasts is useful in studying the lung tissue remodeling process in wound healing and disease development. However, the involvement of bronchial epithelial cells in this process should also be investigated. METHODS We applied a lay...
متن کاملHuman bronchial epithelial cells can contract type I collagen gels.
Fibroblasts can contract collagen gels, a process thought to be related to tissue remodeling. Because epithelial cells are also involved in repair responses, we postulated that human bronchial epithelial cells (HBECs) could cause contraction of collagen gels. To evaluate this, HBECs were plated on the top of native type I collagen gels and were incubated for 48 h. After this, the gels were rele...
متن کاملModification of type I collagenous gels by alveolar epithelial cells.
Contraction of type I collagen gels is an in vitro model of tissue remodeling. In addition to fibroblasts, some epithelial cells can mediate this process. We therefore hypothesized that alveolar epithelial cells might contract extracellular matrices and have the potential to directly participate in the remodeling of the lung after alveolar injury. A549 cells were plated on top of collagen gels,...
متن کاملTh2 cytokine regulation of type I collagen gel contraction mediated by human lung mesenchymal cells.
Asthma is characterized by chronic inflammation of the airway wall with the presence of activated T helper 2 (Th2) lymphocytes. The current study assessed the ability of Th2 cytokines to modulate fibroblast-mediated contraction of collagen gels to determine if Th2 cytokines could contribute to tissue remodeling by altering mesenchymal cell contraction. Human fetal lung fibroblasts, human adult ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 274 1 شماره
صفحات -
تاریخ انتشار 1998